EXERCISE 4 OPEN PROBLEMS IN NUMBER THEORY 2017/18 DUE DATE: MAY 16, 2018

Exercise 1. The Gaussian $g(x) = e^{-\pi x^2}$ lies in $\mathcal{S}(\mathbb{R})$. Show that the Fourier transform of g is itself: $\hat{g} = g$. Here the Fourier transform is normalized as $\hat{g}(x) := \int_{-\infty}^{\infty} g(y) e^{-2\pi i x y} dy$.

Exercise 2. Show that there are exactly 6 different representations of 4^a as a sum of three integer squares: $r_3(4^a) = 6$.

Exercise 3. Jarnik's theorem states that there is some c > 0 so that any arc of length $\langle cR^{1/3} \rangle$ on the circle $x^2 + y^2 = R^2$ of radius R cannot contain more than two lattice points. Show that the three lattice points

 $(4n^3 - 1, 2n^2 + 2n), (4n^3, 2n^2 + 1), (4n^3 + 1, 2n^2 - 2n)$

all lie on the circle $x^2 + y^2 = R_n^2$, with $R_n^2 = 16n^6 + 4n^4 + 4n^2 + 1$, and are contained in an arc of length $(16R_n)^{1/3} + o(1)$. Hence the exponent 1/3 in Jarnik's theorem is sharp.