EXERCISE 4
 OPEN PROBLEMS IN NUMBER THEORY 2017/18

DUE DATE: MAY 16, 2018

Exercise 1. The Gaussian $g(x)=e^{-\pi x^{2}}$ lies in $\mathcal{S}(\mathbb{R})$. Show that the Fourier transform of g is itself: $\widehat{g}=g$. Here the Fourier transform is normalized as $\widehat{g}(x):=\int_{-\infty}^{\infty} g(y) e^{-2 \pi i x y} d y$.

Exercise 2. Show that there are exactly 6 different representations of 4^{a} as a sum of three integer squares: $r_{3}\left(4^{a}\right)=6$.

Exercise 3. Jarnik's theorem states that there is some $c>0$ so that any arc of length $<c R^{1 / 3}$ on the circle $x^{2}+y^{2}=R^{2}$ of radius R cannot contain more than two lattice points. Show that the three lattice points

$$
\left(4 n^{3}-1,2 n^{2}+2 n\right), \quad\left(4 n^{3}, 2 n^{2}+1\right), \quad\left(4 n^{3}+1,2 n^{2}-2 n\right)
$$

all lie on the circle $x^{2}+y^{2}=R_{n}^{2}$, with $R_{n}^{2}=16 n^{6}+4 n^{4}+4 n^{2}+1$, and are contained in an arc of length $\left(16 R_{n}\right)^{1 / 3}+o(1)$. Hence the exponent $1 / 3$ in Jarnik's theorem is sharp.

